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ABSTRACT 

Sound waves propagating near the ground are scattered by random fluctuations in the velocity 
and temperature fields. We revisit the problem of scattering of sound by turbulence using an 
improved von Kärmän-type model for the atmospheric turbulence spectrum. The new model 
incorporates large boundary-layer scale eddies generated by atmospheric convection, as well as 
smaller height-scale eddies generated by surface-layer shear. We show that velocity fluctua- 
tions from the large convective eddies are typically the cause of random signal behavior for low 
acoustical frequencies and line-of-sight propagation. For higher frequencies and scattering 
angles, the shear turbulence becomes more important, with the relative importance of scattering 
by temperature and velocity fluctuations depending on the degree of atmospheric convection. 
By applying the new model to monostatic sodar systems, we find that sodar measurements of 
the temperature structure parameter can be systematically contaminated by the velocity struc- 
ture parameter in strong wind conditions. We also discuss how the new model can be used to 
determine appropriate baselines for direction-finding arrays when there is significant 
degradation of signal coherence caused by turbulence. 

INTRODUCTION 

Turbulence plays an important role in the propagation of sound waves through the atmosphere: 
it causes random fluctuations in the amplitude and phase of acoustic signals, diminishes wave- 
front coherence, and randomly scatters energy into shadow regions (regions where direct sound 
transmission is blocked by refraction or hard objects). As a result, modeling of the spectrum of 
atmospheric turbulence has become an important issue in acoustics. Of primary interest are the 
wind and temperature spectra, since these fields have the strongest effect on sound waves. 

Turbulent motions in the atmosphere span a broad range of spatial scales, from less than a 
millimeter to a kilometer. The spectrum of these motions can be partitioned into three distinct 
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spectral regions or subranges. In order of decreasing eddy size, these are the energy-containing 
(or source), the inertial, and the dissipation subranges (Hinze, 1975). Much previous research 
on wave scattering by turbulence has focused on the contribution coming from the relatively 
small eddies of the inertial and dissipation subranges. Kolmogorov (1941) developed a simple 
statistical scaling for characterizing the inertial-subrange part of the spectrum, and Tatarskii 
(1971) and others succeeded in applying Kolmogorov's spectrum to wave scattering. 

The dissipation subrange can generally be ignored for outdoor sound propagation. For most 
frequencies within the audible range, dissipation-subrange eddies are too small (less than about 
1 cm) to affect the propagation. Therefore the energy-containing and inertial subranges play the 
primary role. Broadly speaking, the large-scale (100 m and larger) eddies of the energy- 
containing subrange drive acoustic phase fluctuations, whereas smaller-scale motions with sizes 
on the order of an acoustic wavelength (10 cm to 10 m) drive the amplitude fluctuations. How- 
ever, the interplay between the propagation geometry, refraction, scattering, and acoustic wave- 
length often complicates this idealized picture. 

The need for a practical spectral model valid in both the energy-containing and inertial 
subranges has forced the atmospheric acoustics research community to look beyond 
Kolmogorov's model. Wave propagation calculations furthermore require a three-dimensional 
spectrum for the turbulence: the structure in the direction of propagation, as well as the 
transverse directions, must be known. Hence the one-dimensional models developed by 
micrometeorologists from time series (such as Kaimal et al (1972) and H0jstrup (1982)) cannot 
be used directly. 

For these reasons many papers on sound scattering in the atmosphere have used Gaussian 
spectral models instead of Kolmogorov's (e.g., Daigle et al, 1983; Daigle et al., 1986; Johnson 
et al, 1987; Wilson and Thomson, 1994). The Gaussian model is simple and reasonable for the 
energy-containing subrange. Unfortunately, it is very poor for the inertial subrange. To 
improve on the behavior of the Gaussian models, von Karmän-type models have recently been 
considered (Ostashev, 1997; Ostashev et al, 1998; Wilson 1998). These models behave simi- 
larly to Gaussian ones in the energy-containing subrange, yet still reproduce Kolmogorov's 
spectrum in the intertial subrange. 

This paper describes our recently developed, isotropic von Kärmän model for the atmo- 
spheric wind and temperature spectra. As described in the following section, the model para- 
meters are determined from atmospheric turbulence similarity scaling theories and previous 
atmospheric measurements. After introducing the model, we discuss its reduction for the two 
special cases where eddies in either the energy-containing or inertial subrange dominate the 
scattering. Lastly, we consider predictions from the model for two important applications: 
monostatic sodar systems and ground-based acoustic arrays used for direction finding. 

THE VON KARMAN TURBULENCE MODEL 

The von Kärmän model for the turbulent velocity fluctuations is based on the following spec- 
trum for the specific turbulent kinetic energy (Ostashev, 1997; Ostashev et al, 1998; Wilson 
1998): 

E fc-o-2 £ )_4r(l7/6)     OIKH\ (1) 

W'*"'')-^r(i/3)(i + rfX6' 



where K is the turbulence wavenumber, a* the variance of one of the velocity components, 

and tu a length scale representative of the transition between the energy-containing and inertial 

subranges. (Note that E(K) in this paper is equivalent to ATTK
2
F{K), and I equivalent to K^, 

in Ostashev (1997) and Ostashev et al (1998).) The spectral density Ojj ( ) between the / andj 

components of the velocity field follows from the energy spectrum (Batchelor, 1953): 

*,()=fö(^-v,). (2) 

The integral of one of the autospectra (the spectra for which / = j ) over the three-dimensional 

wavenumber space equals the variance crl. 
For a scalar quantity such as the temperature field, the spectral density is modeled by the 

equation 

O Uj t  )-   r(11/6) *& (3) 

(Equation (3) is equivalent to (6.44) in Ostashev (1997), as can be shown by substituting for 

Cj with (6.49), applying several identities for gamma functions, and replacing KQ by l7.) 
Given equations (1) to (3) for the spectral densities of the velocity and temperature fields, 

our next step is to determine appropriate values for the variance and length-scale parameters. In 
boundary-layer meteorology, parameters such as these are usually estimated through the use of 
turbulence similarity scaling theories. In the following we consider separate scalings for shear- 
and buoyancy-produced turbulence, and then combine the scalings. 

Shear-produced turbulence. When near-ground turbulence is produced predominantly by 
wind shear, the parameters generally accepted as being most important are the friction velocity, 
u,; the height from the ground, z; and the kinematic surface heat flux, Qs. A temperature scale 

r, is formed by dividing Qs by u,. The velocity variance should therefore be proportional to 

ul, the temperature variance to Tt
2, and the length scales to z. Based on comparisons with 

existing atmospheric data and spectral models, Wilson (2000) determined a2
v = 3.0w,2 and 

£u = 1.8z for the velocity field. Stull (1988) suggests a] = 4.07,2 based on previous results in 

the literature, and Ostashev and Wilson (2000) found £T = 1.5z[r(l/3)/ V^T(5/6)] = 2.0z. 
Buoyancy-produced turbulence.   Atmospheric data show that the horizontal velocity 

components and the temperature obey different similarity scaling rules when buoyancy 
production of turbulence (primarily heating of the layer of air adjacent to the ground) is strong. 
For both fields, the kinematic surface heat flux Qs and the Boussinesq buoyancy parameter 

ß = glTs (where g is gravitational acceleration and Ts surface temperature) appear important. 
However, the appropriate length scale for the horizontal velocity fluctuations is the boundary- 
layer inversion height, z(., whereas for temperature it is the height from the ground, z. The 

velocity scale formed from Qs, ß, and z,. is w, = ((^/k,.)"3. The temperature scale formed 



from Qs, ß, and z is 0f =QJuf, where uf■ = (Qsßz)v . Wilson (2000) determined 

al = 0.35w2 and tu = 0.23z,. for the velocity field, while Stull (1988) suggests a2 = 1.90,2, 

and Ostashev and Wilson (2000) i 7 = 1 Az, for the temperature field. 
Shear-buoyancy combination. For the velocity field, the combined effects of shear and 

buoyancy production are often dealt with simply by adding together spectra representing the 
shear and buoyancy modes of production (Hojstrup, 1982; Peltier et al, 1996). Therefore the 
overall energy spectrum would be 

E(K) = E0 (K; 3.0U
2

 ,\.SZ)+EV (K; 0.35W,
2
 ,0.23z,.), (4) 

where Ev is given by equation (1). Methods for combining the shear and buoyancy contribu- 
tions to the temperature spectrum are not as well established. Peltier et al (1996) suggested 
combining the two contributions in reciprocal (parallel) fashion. A drawback of this approach 
is that we can no longer analytically integrate the combined spectrum. Given that the length 
scales for shear and buoyancy turbulence are very close, however, it is not critically important 
how the spectra are combined: we could use equation (3) directly for the overall spectrum, so 
long as the variance is modeled well. The following equation for the temperature interpolates 
smoothly between the shear- and buoyancy-production limits (Wilson and Thomson, 1994): 

a2=4.or.2[i + io(-z/0]-2/\ (5) 

where Lm0 = -ul lkvßQs is called the Monin-Obukhov length ( kv « 0.4 is von Kärmän's 
constant). The following equation (based on a derivation in Ostashev and Wilson (2000)) for 
the temperature length scale interpolates in similar fashion: 

^2.0z' + 7fZ/H W 
l + 10(-z/L,„„) 

Given equations (1) to (6), other quantities of interest relevant to scattering (such as integra- 
ted spectra, correlation functions, and structure-function parameters) can be determined by per- 
forming various integrations and transformations. The procedures are summarized by Tatarskii 
(1971) and Ostashev (1997). In the remainder of this paper we consider various applications of 
these equations to acoustic scattering in the near-ground atmosphere. Comparisons are also 
made between the relative strengths of scattering by wind velocity and temperature fluctuations. 

SCATTERING IN THE ENERGY-CONTAINING SUBRANGE 

It was mentioned in the Introduction that for many situations acoustic scattering in the atmo- 
sphere is affected mainly by large-scale turbulence in the energy-containing subrange. For 

example, if x /{kL2
T)»1 and JC /[kL2

v)» 1, the variances of the log-amplitude and phase fluctu- 
ations (for both planar and spherical waves) are nearly the same and given by (Flatte et al, 
1979; Ostashev and Wilson, 2000) 



k2x {     al     .   Aa^ wo=^a^, T'       "   c2 (7) 

Here x is the horizontal propagation distance, k = 27tf/c0 is the acoustic wavenumber, ^ is the 

log-amplitude fluctuation, <j> is the phase fluctuation, the Z's are integral length scales,/is the 

frequency, and T0 and c0 are representative values of the temperature and sound speed. It 
follows that the ratio N of the velocity and temperature contributions to the moments in the 
energy-containing subrange is given by 

.2   I Jl 

N=4Lo<ryco
2. (8) 

The model in the previous section implies that the variance for the velocity field is simply the 

sum of the contributions from shear and buoyancy turbulence, i.e., cr2
v - 3.0«, + 0.35w, . The 

velocity field integral length scale corresponding to the model is (Wilson, 2000) 

L      12^ + 0-022(z,/z)(-z,/Zmo)
2/3 (9) 

°      ' l + 0.22(-z,./Zmo)
2/3 

An equation for the temperature variance was given earlier (equation (5)). The integral length 

scale for temperature, L7, is equal to [-Jxr(516)/ r(l / 3)]^ T, with £ T given by equation (6). 
The height dependence of the log-amplitude variance for scattering in the energy-containing 

subrange is shown in Figure 1. We see that scattering is stronger in sunny conditions than in 
cloudy ones, and is nearly independent of height near the ground. In this region, velocity 
fluctuations from the buoyantly produced zl -scale eddies are the main contributor to scattering. 
In very windy conditions, for heights larger than 10 m, shear-produced velocity fluctuations 
take over as the main contributor to scattering. 

The ratio of velocity and temperature contributions (equation 8) is shown in Figure 2. For 
scattering in the energy-containing subrange, the velocity fluctuations are always much more 
important than the temperature fluctuations, even for sunny, light wind conditions. This is 
particularly so near the ground. 

SCATTERING IN THE INTERTIAL SUBRANGE 

The inertial subrange consists of wavenumbers such that id » 1. In this limit the energy 
spectrum of the velocity fluctuations is 

40= 4ffi/6^>-i/3C3 =—¥-^c2
uK-5n. (io) v ;   V^r(i/3) 27r(i/3) v 
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Figure 1. Height dependence of the scaled log-amplitude variance. Solid lines are for 

scattering in the energy-containing subrange (plotted is LTa
2

T IAT^ + LUG
2

UI'C0 , with the 

Z's in meters), and dashed lines are for the inertial subrange (plotted is C2. IT$ + 

22Cl /3c0
2). Blue: cloudy with light wind («, = 0.1 m/s, T. = -0.33 K); green: cloudy 

with strong wind (M. = 0.7 m/s, T, = -0.046 K); red: sunny with light wind (w, = 0.1 

m/s, T. = -1.6 K); yellow: sunny with strong wind (u, = 0.7 m/s, T, = -0.23 K). For all 

cases, z(. =1000 m. 

For the spectral density of temperature, 

<M)= 
r(i l / 6) 

,r3/2r(l/3p 
2.^-11/3/)-2/3 

(JTK 
i8^r(i/3) 

C2
TK-UI\ (H) 

The equalities involving the variance in length scale in equations (10) and (11) are the large- 
wavenumber limits of equations (1) and (3); the second pair of equalities, involving the 

structure-function parameters C2
U and C], follow from equation (6.38) in Ostashev (1997). 

Equations (10) and (11) imply that 

a -*&$drr.«*c} -^w (12) 
n 
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Figure 2. Height dependence of the scaled ratios M and TV of the velocity term to the 
temperature term for scattering of sound. Legend is the same as Figure 1. 

Equation (4) implies that the contributions to C2
U from shear and buoyancy turbulence simply 

sum together. The result is the equation 

CB
J=3.9-4[l + 0.85(-z/^r (13) 

When equations (5) and (6) are used to calculate C], a relationship for C] originally suggested 
by Wyngaard et al (1971) results: 

T; 
C>= 4.9^11+ ™(-z/OP3 (14) 

It is shown in section 7.3.1 of Ostashev (1997) that all statistical moments of a sound field 

scattered by inertial-subrange turbulence are proportional to C^ / ro
2 + 22C2

U I Zc\ . For exam- 
ple, the variance of log-amplitude fluctuations of a plane sound wave is given by 



7/6    11/6 X1) = 0.077k"bx 
fcl+22Cl} 

T2      3  c2 
(15) 

The ratio M of the velocity and temperature contributions for inertial-subrange scattering is 
therefore 

M 
22 C2

v/c2 

3 CllZ 
JL (16) 

T'^O 

The height dependence of the log-amplitude variance for scattering in the inertial subrange 
is shown in Figure 1. The ratio of velocity and temperature contributions (equation 16) is 
shown in Figure 2. In contrast to energy-containing-subrange scattering, inertial-subrange 
scattering decreases rapidly with increasing height. Its strength is determined mainly by the 
degree of windiness, rather than the heat flux. The contribution from velocity fluctuations is 
normally stronger than that from temperature fluctuations, although near the ground in light 
wind conditions the temperature contribution can be larger. 

MONOSTATIC SOD AR SYSTEMS 

In a paper soon to be published (Ostashev and Wilson, 2000), we consider the implications of 
the preceding turbulence model for measurements made with monostatic sodar systems. When 
sodars are operated with a vertical beam, it is normally assumed that the scattering results solely 

from temperature fluctuations (C2). However, due to the height-dependence of the mean 

horizontal wind speed, turbulent velocity fluctuations (C2) can significantly contaminate the 

sodar measurements in strong winds. Figure 3 is a plot, for a vertically directed beam, of the 

ratio am of the actual scattering cross section to that given by Monin's (1962) classical 

equation versus the ratio M for different values of the wind velocity at the height of the 
scattering volume. Monin's equation predicts that the scattering cross section depends solely 

on C2 for pure backscattering. Values of the ratio am larger than 1 in Figure 3 imply 

contamination by C2
V . For wind speeds at the scattering height greater than about 10 m/s, and 

values of the ratio M greater than about 1000, there is indeed significantly more scattering than 
predicted by Monin's equation. The calculations in this figure are somewhat idealized in that 
the mean vertical profiles for sound speed and wind speed are assumed to be linear. 

We have also performed numerical calculations for mean vertical profiles that obey Monin- 

Obukhov similarity. For a scattering height of 0.5zi (with zj = 1000 m), we obtained the 

following results: 

• Sunny and light wind (w, = 0.1 m/s, T. = -1.6 K): M = 554, <x„,=1.01. 

• Sunny and moderate wind (w, = 0.3 m/s, T, = -0.54 K): M =572, <J„,=1.12. 

• Sunny and strong wind (K. = 0.7 m/s, T. = -0.23 K): M = 874, <TJB=2.55. 

• Cloudy and light wind (i*. = 0.1 m/s, T. = -0.33 K): M = 1520, <r,„=1.02. 
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Figure 3. Normalized backscattering cross section am (l 80°) for a monostatic sodar 

versus the ratio M = (22 / 3)(c^ / c\ )/(cj IT*) for different values of the horizontal 
wind velocity at the height of the scattering volume. The lines correspond to 0 m/s 
(blue), 5 m/s (green), 10 m/s (red), 15 m/s (yellow), and 20 m/s (purple). 

• Cloudy and moderate wind (w, = 0.3 m/s, T, = -0.11 K): M = 1970, ö"m=1.56. 

• Cloudy and strong wind (u, = 0.7 m/s, 7, = -0.046 K): M = 4760, am=\ 1.33. 

In sunny weather with strong wind, or in cloudy weather with moderate to strong wind, the 
scattering cross section is significantly affected by atmospheric winds and velocity fluctuations. 

COHERENCE AND DIRECTION-FINDING ARRAYS 

Most new U.S. Army acoustical systems use small, ground-based beamforming arrays (foot- 
print smaller than about one square meter) to determine the horizontal bearing angle of sound- 
emitting targets. The ability of these arrays to track targets is limited by the coherence between 
the signals received by the array sensors. Propagation through turbulence reduces the coher- 
ence, as illustrated in Figure 4. 

When the integral length scale of the refractive index field is large compared to the 
separation between the sensors, the wavefronts (viewed on the array scale) have a smooth, 
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Figure 4. Illustration of random variations in propagating wavefronts resulting from 
propagation through turbulence. 

nearly planar appearance when they arrive at the array (upper Figure 4). (On a scale much 
smaller than the microphone separation the wavefronts may have a rough, random appearance.) 
For the opposite extreme, when the sensor separations are large compared to the integral length 
scale (lower Figure 4), the wavefronts take on a rough, random appearance. In analogy to 
optics, the former situation would correspond to variations in the apparent position of an image. 
The latter situation would correspond to random distortions in the image. 

Note that both situations manifest themselves as a reduction in coherence (consistent ampli- 
tude and phase relationship) between the sensor signals. Having a sensor separation that is 
small compared to the integral length scale does not guarantee that the coherence is good on 
average since the phase fluctuations can still be large. The variations in angle of arrival would 
still randomize the phase relationship between the received signals. One important practical 
distinction between the two situations is that if the sensor separation is large compared to the 
integral length scale, there is no additional loss in coherence from moving sensors farther apart. 
The mutual phase variations between the sensors are already fully saturated. For relatively 
small separations, however, increasing the sensor separation increases the random phase differ- 
entials. Therefore it is important that one know the characteristic integral length scale for the 
sound field when designing an array. 

Based on equation (20) to follow, the effective integral length scale for the acoustic index- 
of-refraction fluctuations (parallel to the propagation direction) is 

_ crTLT 110 
eff    ~ ~2     irpl 

+ A(j2Llcl 

+ 4a. Jet 
(17) 

Figure 5 shows calculations of Leff from our model. The longest values for the integral length 
scale (>100 m) occur when the wind is weak there is little heat flux from the ground to the air 
(cloudy conditions). In these situations shear-induced velocity fluctuations and temperature 



Integral Length Scale (m) 

Figure 5. Effective integral length scale for several atmospheric conditions. Legend is 
the same as Figure 1. 

fluctuations have little effect on the length scale. The shortest values (<20 m) occur near the 
ground when the wind and heat flux are both strong. 

Based on the parabolic and Markov approximations, the coherence for a propagating wave 
can be written in the general form 

r(f, x, r) = exp[- a{f, r)x], (18) 

where r is the separation between the sensors perpendicular to the propagation path, and /the 
frequency of the sound wave. The quantity a(f,r) can be thought of as an attenuation coeffi- 
cient for the coherence. As shown by Ostashev (1997) for spherical wave propagation through 
a random medium with both temperature and velocity fluctuations, the value of a(f, r) is 

1   » 

«(/>)= 7l2k2 J j[l - J0(K±rt)] ®eff{0,K±)dK± dt. (19) 

0 0 

Here J0 is the Bessel function of the first kind, and the wavenumber vector has been decom- 

posed as = ,+ x, where ± is the component perpendicular to the direction of propaga- 
tion. The effective spectrum for the acoustic index-of-refraction fluctuations is given by 
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Figure 6. Inverse attenuation coefficient for the coherence (i.e., the distance at which the 
signal coherence diminishes to lie) for four example atmospheric states. The contours 
are in units of meters, as a function of the acoustic frequency and the separation between 
the sensors. Upper left: mostly sunny and calm conditions (u* =0.1 m/s and T, = -3.3 
K). Upper right: mostly sunny and windy conditions (u, = 0.5 m/s, T, = -0.65 K). 

Lower left: mostly cloudy and calm conditions (w, =0.1 m/s, T, = -0.33 K). Lower 
right: mostly cloudy and windy conditions («* = 0.5 m/s, Tt = -0.065 K). For all cases, 

z, =1000 m. 

^effX   I'    ±/ rrl       ^ 2 
(20) 

T2 

Note that it is primarily the wind fluctuations in the direction of wave propagation that affect 
the coherence. 



Calculations of aTx (f,r) for the four different atmospheric conditions are shown in Figure 
6. The contours represent the distance at which the signal becomes incoherent, as a function of 
frequency and sensor separation. We see that sunny and windy conditions constitute the least 
favorable propagation condition. Large, vigorous turbulent eddies forming in such conditions 
weaken acoustic signal coherence considerably. The most favorable propagation condition is 
mostly cloudy and calm, since only very weak turbulence is present in this case. The model 
calculations show, for a sensor separation of 1 m and frequency of 1000 Hz, that coherent 
propagation generally occurs only out to distances of several hundred meters. Fortunately the 
situation improves dramatically for lower frequencies; for 1-m separations at 100 Hz, coherent 
propagation persists to well over 10 km. If the separation is increased to 10 m, one can still 
expect good coherence for propagation distances of several kilometers. 

Some caveats must be kept in mind regarding these calculations. First, little experimental 
data on acoustic coherence degradation by atmospheric turbulence has been collected and 
analyzed. This situation is quite surprising, and demands rectification, given the importance of 
the phenomenon for modern acoustic direction-finding systems. Second, the calculations are 
for "line-of-sight" (straight line) propagation. Reflections from the ground and refraction from 
atmospheric wind and temperature gradients (with subsequent creation of refractive shadow 
regions) both affect the coherence. Research into these effects is still at an early stage (Daigle 
et al, 1986; Havelock et al, 1995; Ostashev and Goedecke, 1998). 

CONCLUSIONS AND RECOMMENDATIONS 

The turbulence model in this paper was systematically developed from similarity theory and 
previous, well-accepted experimental results for the atmospheric boundary layer. Because it is 
based on von Kärmän's three-dimensional turbulence spectrum, it can be readily applied to 
acoustic wave propagation problems. It is a valuable improvement over previous models based 
on the Kolmogorov or Gaussian spectra, in that it provides reasonable results across the entire 
range of sizes of boundary-layer eddies. It should work well for atmospheric conditions 
ranging from neutral to highly unstable. 

The model in this paper is, however, imperfect in that it does not account for some known 
features of atmospheric turbulence such as anisotropy. For example, shear forces are known to 
stretch eddies in the direction of the mean wind. For this reason we have recently begun apply- 
ing Mann's (1994) spectral model for a shear surface layer to acoustical calculations. 

Another aspect of atmospheric turbulence not accounted for by the model is the "gustiness" 
of the wind. Large boundary-layer scale eddies cause the wind to gust on time scales lasting 
several minutes. These gusts can create locally high wind shear. Hence the present model is 
misleading in predicting the absence of shear-generated turbulence at very low mean wind 
speeds. It is also probable that the strength of the large-scale eddies diminishes somewhat near 
the ground, whereas the present model predicts a height-independent variance from these 
eddies. 

Besides turbulence, other random atmospheric behavior can affect sound waves. In parti- 
cular, during stable nighttime conditions, turbulence is suppressed and gravity waves probably 
play the primary role in randomizing acoustic propagation. This phenomenon has gone nearly 
unstudied in acoustics, and needs to be addressed, since acoustical systems offer particular 
tactical advantages during the nighttime. 
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